Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mustafa Odabașoğlu, ${ }^{\text {a }}$ *
 Çiğdem Albayrak ${ }^{\text {a }}$ and Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ${ }^{\text {b }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.109$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(3-formyl-4-hydroxy-5-methoxyphenyl)methane

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$, the asymmetric unit contains one half-molecule; a twofold rotation axis bisects the molecule. The structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intramolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ intermolecular interactions.

Comment

Hydroxy-substituted benzaldehyde reagents used for condensation with primary amines, hydrazines, hydroxylamine and other primary amine derivatives afford imine derivatives which can function as ligands towards a number of metal cations (Loudon, 2002; Khandar \& Nejati, 2000; Khandar \& Rezvani, 1999).

The asymmetric unit of the title compound, (I), contains one half-molecule; a twofold rotation axis passes through C9 (Fig. 1). The bond lengths and angles (Table 1) are in normal ranges (Allen et al., 1987).
In (I), molecules have strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and they are linked through C8$\mathrm{H} 8 \mathrm{a} \cdots \mathrm{Cg} 1$ (Cg 1 is the centroid of the C1-C6 ring) and Cg1 \cdots Cg1 intermolecular interactions (Fig. 2). For the C8-

Figure 1

The molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probalitity level. The intramolecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]

Received 25 November 2005
Accepted 9 December 2005
Online 14 December 2005

Figure 2
A packing diagram of (I) with the $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions shown as dashed lines.
$\mathrm{H} 8 a \cdots C g 1$ contact, the distance between atom $\mathrm{H} 8 a$ and the aromatic ring centroid is 3.01 (3) \AA (symmetry code: $1-x$, $1-y,-z)$. There is also $\pi-\pi$ stacking between adjacent molecules at (x, y, z) and $\left(-x, y, \frac{1}{2}-z\right)$, with distances of 3.608 (16) \AA between the rings centroids and perpendicular distances of 2.481 (16) A between the rings.

Experimental

A mixture of o-vanillin (0.1 mol) and formaldehyde (0.1 mol) was stirred at 393 K for 2 h . The solution was added to boiling ethyl alcohol and stirred at 393 K for 20 min and cooled to room temperature. The precipitate was filtered off and recrystallized from ethyl alcohol by slow evaporation (yield $1.58 \mathrm{~g}, 10 \%$, m.p. 424426 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}$
$M_{r}=316.30$
Monoclinic, C2/c
$a=14.960$ (3) А
$b=8.2889(11) \AA$
$c=13.249(3) \AA$
$\beta=115.015(15)^{\circ}$
$V=1488.8(5) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.963, T_{\text {max }}=0.993$
6042 measured reflections
1470 independent reflections

Refinement

Refinement on F^{2}
H atoms treated by a mixture of
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.109$
$S=1.00$
1470 reflections
110 parameters
independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.049 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.12 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.388(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.381(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.399(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.400(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.360(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.368(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.395(3)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.219(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.9(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$124.8(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$118.0(2)$	$\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 5^{\mathrm{i}}$	$113.6(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-176.1(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 5^{\mathrm{i}}$	$108.23(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 5^{\mathrm{i}}$	$-72.25(18)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 8$	$-1.6(3)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.94	$2.648(3)$	145

Atom H9, attached to C9, was located in a difference map and refined isotropically $[\mathrm{C}-\mathrm{H}=0.98$ (2) \AA A . The remaining H atoms were positioned geometrically $[0.82(\mathrm{OH}), 0.93(\mathrm{CH})$ and $0.96 \AA$ $\left.\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})$ values of 1.5 (1.2 for methine) times $U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Khandar, A. A. \& Nejati, K. (2000). Polyhedron, 19, 607-613.
Khandar, A. A. \& Rezvani, Z. (1999). Polyhedron, 18, 129-133.
Loudon, M. G. (2002). Organic Chemistry, , 4th ed., p. 837. Oxford University Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

